NAVIGATION WORKBOOK 18465 Tr

N

For Power-driven and Sailing Vessels

DAVID BURCH

E

LARRY BRANDT

Table of Contents

INTRODUCTION

Scope	v
Chart 18465 Tr	v
Terminology	v
Magnetic Variation	v
Tides and Currents	v
Tools of the Trade	vi
For more Help	vi

EXERCISES

CHAPTER 1 – THE ROLE OF NAVIGATION	1
CHAPTER 2 – NAUTICAL CHARTS AND CHART READING	3
CHAPTER 3 – OTHER NAVIGATION AIDS	6
CHAPTER 4 – COMPASS USE	8
CHAPTER 5 – DEAD RECKONING	10
CHAPTER 6 – PILOTING	13
CHAPTER 7 – ELECTRONIC NAVIGATION	15
CHAPTER 8 – TIDES AND CURRENTS	17
CHAPTER 9 – NAVIGATION IN CURRENTS	19
CHAPTER 10 – NAVIGATION RULES	22
CHAPTER 11 – NAVIGATION PLANNING AND PRACTICE	32
CHAPTER 12 – IN DEPTH	34

RESOURCES

Current Tables	38
Daily Data	38
Table 2 - Current Differences	42
Endnotes for Tidal Current Tables	44
Table 3 - Speed of Current Data At Any Time	45
Astronomical Data	46
Table 5 - Rotary Currents Explanation	47
Rotary Current Data Off San Francisco	48
Current Sailing Resources	49
Tide Tables	50
Daily Data	50
Table 2 - Tidal Differences	51

Table of Contents Continued...

Light List	52
Light List Index	55
Luminous Range Diagram	56
Characteristics of Lights	
Local Notice to Mariners	58
NOAA Chart Catalog No. 2	61
US Coast Pilot Vol. 7	62
Coast Pilot Index	
Coast Pilot Climate Data	
Coast Pilot Marine Weather Statistics	79

ANSWERS

CHAPTER 1 - THE ROLE OF NAVIGATION	81
CHAPTER 2 – NAUTICAL CHARTS AND CHART READING	81
CHAPTER 3 - OTHER NAVIGATION AIDS	83
CHAPTER 4 – COMPASS USE	85
CHAPTER 5 – DEAD RECKONING	
CHAPTER 6 – PILOTING	89
CHAPTER 7 - ELECTRONIC NAVIGATION	90
CHAPTER 8 – TIDES AND CURRENTS	91
CHAPTER 9 - NAVIGATION IN CURRENTS	94
CHAPTER 10 - NAVIGATION RULES	96
CHAPTER 11 – NAVIGATION PLANNING AND PRACTICE	98
CHAPTER 12 – IN DEPTH	99

APPENDIX

A1. Using Ele	ectronic Charts	101
A2. Interpola	ition	102
A3. Sources f	or 18465 Tr Printed Charts	104

INTRODUCTION

Scope

These exercises are designed to help small-craft navigators hone their skills in both routine and special circumstances. They are practical exercises in chart reading and plotting, position fixing, dead reckoning, compass work, and the use of special publications such as Chart Catalogs, *Tide Tables*, *Current Tables*, *Light Lists*, Notices to Mariners, *Chart No. 1*, *Navigation Rules*, and *U.S. Coast Pilots*.

These exercises can be incorporated into an ongoing navigation course or used by individuals on their own. This book along with a text book of choice would then make up a selfstudy course. The chapters of this workbook correlate with those of the book *Inland and Coastal Navigation, 2nd edition* by David Burch, but other books can also provide the necessary background.

The level of these exercises is about that required in the USCG Masters license exam for 100 GT, which in turn is about the same as that used in coastal navigation certification exams from the U.S. Sailing Association, American Sailing Association, Royal Yachting Association, and the Canadian Yachting Association.

Chart 18465 Tr

The exercises in this book that require a chart use NOAA chart 18465 Tr, Strait of Juan de Fuca, Eastern Part. This is one of several NOAA training charts. This one is frozen in time to 1998, but is otherwise similar to the standard navigation chart of this region (No. 18465), which is updated weekly, as are all NOAA charts now that they are all Print on Demand (POD). For training exercises, it is best to use the training chart version 18465 Tr, so all details match the exercises.

The 18465 Tr is available at most NOAA chart dealers and from several online outlets (see Appendix A3.). This chart is used by many schools in the Pacific Northwest, but the basic navigation training does not depend on the specific chart used.

Except for this paper chart, which must be purchased separately, all other resource materials are provided in the Resources section, which includes excerpts for all publications needed. You can also work the exercises with an electronic version of 18465 Tr, and for that solution we have an extended discussion in Appendix A1, which includes a source for the echart. We encourage mariners to solve the charting exercises using both paper charts and electronic charts. Also provided are a few tips on the use of ECS (electronic charting system) for solving navigation problems.

Terminology

All references to miles are nautical miles. Sometimes this is stated as miles other places as nmi. One nautical mile is about 6,000 ft. (Exact is 1 nmi = 1852m = (1852x100/2.54)/12 ft, which is about 6076.115 ft.)

General phrases like "north of" or "due east of," etc, always refer to true directions unless otherwise specified. Wind directions are labeled by the source of the wind, i.e. north wind flows from north to south, sea breeze blows from the sea toward the land. Wind waves and currents, on the other hand, are labeled with the true direction they flow toward. (Swells, as opposed to wind waves, are labeled by the direction they come from.)

Magnetic Variation

The magnetic variation on the 18465 Tr chart (frozen in 1998) covers magnetic variations that vary from 19.5° E to 19.75° E. To simplify the exercises, however, we use a fixed value of 20.0° E for all locations of the chart, and for all exercises.

Tides and Currents

Because the design of the NOAA *Tide Tables* and *Tidal Current Tables* have changed very little since the time of the 18465 Tr chart, we have chosen to keep the original versions we used in the first edition of this book. Tide and current data provided are from 1999. The procedures for using the newest tables are the same as with these older ones.

Tools of the Trade

These are the basic plotting tools used in marine navigation. There are many alternatives, but these are the most common by far, worldwide, on all vessels.

Dividers

Dividers are used to measure the distance between two points, and also to help align parallel rulers or plotters. There are several styles. Shown here is a type of "speed bow." You can interchange one of the points with a pencil lead for drawing circles of position or other arcs.

A "bow" is a tool that will hold its point separation once set, and it is set by a rotating knob in the center of the tool—as opposed to conventional dividers which are just pulled open or squeezed closed. A "speed bow" is one that you can pull open or close by hand without having to use the center knob. In other words, you can override the fine control of the center knob by firmly pulling or pushing on the legs themselves.

This particular model has become the dividers of choice for the vast majority of professional navigators worldwide because of its ease of use and accuracy. This economic model is called (appropriately) "ultra light dividers."

Parallel Rulers

This is a tool that lets you draw one line parallel to another, some distance away from it. To use it, align one edge of the rulers with the base line, and then holding down that side of the tool, move the other side to the location of the new line. If the new location cannot be reached in one step, then you walk the rulers across the page to the destination.

It takes a bit of practice to manipulate these without slipping, but after some practice it is quite easy. There are numerous styles and sizes of these. A simple design, in clear plastic with small cork anti-slip pads, 15 inches long is a popular and functional option.

Weems Plotter

An alternative to parallel rulers is a rolling tool called a parallel plotter, or more specifically, the Weems parallel plotter, named after its inventor. These are designed to roll without sliding, which they generally do fairly well, with little practice. Unfortunately, rolling plotters do not work well near the edges of charts or over folds in the chart. A solution is always also carry parallel rulers underway and use the Weems plotter whenever possible, but immediately switch to parallel rulers if need be. On a large chart table (or kitchen table) many navigators find this tool faster and easier to use than parallel rulers.

Triangles

The most accurate chart plotting is often done with two matching navigation triangles. They take a bit more practice to master, but the larger protractor scale and more positive positioning does enhance the accuracy. They are popular with professional mariners.

Three-Arm Protractor

Other applications are possible, but the main function of this tool is to plot a fix from two horizontal sextant angles, which is faster than the compass and ruler plotting.

For more Help

Check starpath.com/18456tr for news and resources related to this book as well as contact with the authors. Comments and suggestions will be much appreciated and addressed promptly. Training aids are available as well as links to navigation schools and navigation certification associations around the world that offer basic and advanced training in marine navigation.

Plotting tools. *Dividers, parallel rulers, Weems Plotter, triangles, 3-arm protractor*

4 Navigation Workbook 18465 Tr

2-26. Read the notes on the chart (always a good idea) to answer these questions: (A) What does the green "NWR" mean on the NE shore of Protection Island? (B) What part of the chart has the most accurate (latest) soundings measurements? (C) What is the copyright status of NOS nautical charts? (D) Running our dingy along shore about 5 miles due east of Smith Island (not shown on the chart) we see a series of red flags and lights. What do they mean?

2-27. (A) What is the true bearing from the Smith Island Light to the FL G 4s light at Davidson Rock? (B) What is the distance between the two?

2-28. There is a rock shown about one quarter of a mile west of Smith Island. (A) What is the depth at the site of that rock? (B) When the tide height is about o feet in that area, describe what the water will look like around that rock and between it and the island.

2-29. On Kulakala Pt (48° 06', 123° 04') there is something marked "E COR HO." What is that?

2-30. We call this the US Shore Route. It proceeds generally eastward from the Pacific Ocean toward Pt Wilson. We'll pick it up about Crescent Bay:

Waypoint	Location
1	0.25 miles N of Crescent Bay Buoy 2
2	Angeles Pt. Buoy 4
3	New Dungeness Buoy 2
4	Pt. Wilson Buoy 6

What is the compass course and distance of leg (A) $1 \rightarrow 2$, (B) $2 \rightarrow 3$, (C) $3 \rightarrow 4$?

2-31. What distinguishes BELL, GONG, WHISTLE, and HORN sounds?

2-32. Considering that a hand span is about 7 inches, and on a 1:10,000 scale chart that covers about 1 miles distance, what distance is covered by a hand span on a 1:40,000 scale chart?

2-33. One handspan on a **1:80,000** scale chart is about how many miles?

2-34. Is a 1:10,000 harbor chart a LARGER scale or a SMALL-ER scale chart than 1:1,000,000 oceanic chart?

2-35. For close inshore navigation, which chart scale, large or small, would better allow presentation of rocks, kelp beds, and other items of localized concern?

2-36. What is the echart type called that when displayed on an electronic chart plotter allows the user to see an exact copy of a paper chart?

2-37. List at least 4 major differences between ENC and RNC echarts.

2-38. What is the document that a navigator consults to amend and update a paper chart to the latest information, allowing him/her to pencil in buoy, hazard, and other corrections?

(A) Coast Pilot.

(B) Local cruising guides.

(C) Local Notice to Mariners.

(D) Tides and Current tables.

2-39. Explain what the following light and buoy labels mean. (A) RW "NA" Mo (A) WHISTLE, (B) Fl G 4sec BELL, (C) G "31" FL G 4s GONG, (D) F R 25 ft "8", (E) FL 4sec 30ft 8M "2".

2-40. Which of the following statements concerning buoy location and number sequence is correct?

(A) Can be counted on as accurate and sequential, with no missing numbers.

(B) Is usually sequential, but may occasionally be missing numbers of the sequence.

(C) Can always be relied on for accurate location even though numbering may be off.

(D) Can always be relied on for sequential numbering even though position may be off.

2-41. When tracking a range indicated by painted boards and lights, which board and light set is the set closest to your vessel, the upper or the lower set?

2-42. Ranges can be very accurate aids to navigation but they are not always ahead of us where we need them. What must we do to follow a charted range if the range signals are astern of us?

2-43. Approaching the entrance to a harbor from offshore in restricted visibility you sight a buoy with vertical red and white colors, possibly with a white light atop. On which side must or may you leave this buoy as you pass it?

2-44. Regulatory markers are used for important communications, such as speed limits, no wake zones, etc. What does it indicate when you see a regulatory buoy with a crossed diamond on it?

2-45. What do the following navigation abbreviations mean? (A) C, (B) H, (C) R & B, (D) COG, (E) CMG, (F) Trk.

2-46. What are the definitions of the following terms: (A) Course, (B) Heading, (C) Bearing, (D) Course Over Ground, (E) Course Made Good, (F) Track.

2-47. A mark with two black spheres atop, typically black with red horizontal bands indicates what?

RESOURCES

The following are excerpts from standard resources used in navigation. The Light List and Coast Pilot also have custom made indices, which just cover the sections excerpted. Page numbers from the original Tide and Current Table pages are included on the samples as they are cross referenced. Book page numbers are in the headers of each page.

Current Tables
Daily Data
Table 2 - Current Differences
Endnotes for Tidal Current Tables44
Table 3 - Speed of Current Data At Any Time45
Astronomical Data46
Table 5 - Rotary Currents Explanation47
Rotary Current Data Off San Francisco48
Current Sailing Resources49
Tide Tables50
Daily Data50
Table 2 - Tidal Differences 51
Light List
Light List Index55
Luminous Range Diagram56
Characteristics of Lights57
Local Notice to Mariners
NOAA Chart Catalog No. 2
US Coast Pilot Vol. 762
Coast Pilot Index77
Coast Pilot Climate Data
Coast Pilot Marine Weather Statistics79

Current Tables

Admiralty Inlet (off Bush Pt.), Washington, 1999

F-Flood, Dir. 180° True E-Ebb, Dir. 005° True

July								August								September							
Slack Maximum			num	Slack M			mum	Slack Maximum			mum	Slack Maximum				Slack Maximum				Slack	Maxi	mum	
1 Th	h m 0217 0450 1310 1953	h m 0334 0930 1626 2300	knots 0.3F 3.1E 2.6F 2.1E	16 F	h m 0232 0623 1357 2023	h m 0428 1025 1707 2339	knots 1.0 F 3.3 E 2.9 F 2.7 E	1 Su	h m 0248 0646 1407 2014	h m 0447 1039 1710 2341	knots 0.9 F 2.7 E 2.3 F 2.7 E	16 M	h m 0331 0811 1505 2037	h m 0548 1141 1752	knots 1.2F 2.2E 1.6F	1 w	h m 0335 0908 1537 2036	h m 0616 1218 1810	knots 1.8F 2.0E 1.4F	16 Th	h m 0408 0950 1644 2025	h m 0009 0652 1303 1836	knots 2.5E 1.4F 1.5E 0.5F
2 F	0302 0532 1347 2026	0417 1009 1702 2339	0.3F 2.9E 2.5F 2.2E	17 Sa	0328 0720 1443 2100	0524 1115 1750	0.9F 2.8E 2.5F	2 M	0333 0748 1452 2046	0539 1129 1751	1.0F 2.4E 2.0F	17 Tu	0422 0912 1556 2107	0022 0642 1234 1834	2.7E 1.1F 1.8E 1.2F	2 Th 0	0432 1023 1646 2119	0037 0720 1327 1907	3.2E 1.8F 1.7E 1.0F	17 F	0503 1056 1811 2057	0057 0751 1412 1935	2.4E 1.3F 1.3E 0.3F
3 Sa	0347 0623 1427 2059	0505 1053 1741	0.3F 2.7E 2.4F	18 Su	0426 0822 1532 2135	0026 0623 1208 1835	2.7E 0.8F 2.3E 2.0F	3 Tu	0422 0900 1544 2122	0025 0638 1227 1836	2.9E 1.1F 2.0E 1.7F	18 w 0	0516 1021 1656 2138	0107 0742 1335 1922	2.6E 1.1F 1.4E 0.9F	3 F	0535 1145 1808 2213	0136 0831 1445 2014	3.1E 1.9F 1.6E 0.8F	18 Sa	0601 1207	0154 0857 1527 2045	2.2E 1.3F 1.3E *
4 Su	0433 0728 1511 2133	0021 0600 1142 1822	2.3E 0.4F 2.4E 2.2F	19 M	0524 0934 1625 2210	0115 0726 1307 1921	2.7E 0.8F 1.8E 1.6F	4 w 0	0516 1023 1645 2201	0113 0743 1334 1929	3.0E 1.3F 1.7E 1.4F	19 Th	0611 1139 1811 2214	0157 0846 1446 2017	2.5E 1.1F 1.2E 0.6F	4 Sa	0640 1304 1934 2319	0242 0943 1605 2130	3.1E 2.1F 1.7E 0.7F	19 Su	0700 1313	0258 1001 1634 2157	2.2E 1.4F 1.5E *
5 M	0520 0848 1602 2209	0106 0702 1241 1909	2.5E 0.6F 2.0E 1.9F	20 Tu O	0620 1056 1725 2244	0204 0832 1413 2010	2.7E 0.9F 1.5E 1.2F	5 Th	0613 1153 1759 2247	0208 0854 1451 2029	3.2E 1.6F 1.5E 1.1F	20 F	0705 1257 1935 2258	0252 0952 1601 2120	2.5E 1.3F 1.2E 0.4F	5 Su	0744 1412 2048	0351 1051 1716 2244	3.1E 2.3F 1.9E 0.7F	20 M	0754 1407 2129	0402 1057 1728 2259	2.3E 1.6F 1.7E 0.4F
6 Tu 0	0607 1021 1701 2247	0154 0810 1349 2000	2.7E 0.8F 1.8E 1.7F	21 w	0711 1222 1833 2320	0255 0938 1525 2103	2.7E 1.1F 1.2E 0.9F	6 F	0710 1318 1920 2340	0307 1004 1611 2136	3.3E 1.9F 1.5E 0.9F	21 Sa	0756 1404 2050 2352	0349 1051 1709 2223	2.5E 1.5F 1.3E 0.3F	6 M	0034 0843 1508 2145	0458 1150 1814 2349	3.2E 2.5F 2.2E 1.0F	21 Tu	0027 0842 1452 2159	0500 1145 1812 2351	2.4E 1.9F 2.0E 0.7F
7 ₩	0654 1158 1810 2329	0245 0920 1505 2057	3.0E 1.2F 1.6E 1.4F	22 Th	0758 1341 1948 2359	0345 1039 1637 2159	2.8E 1.3F 1.2E 0.7F	7 Sa	0806 1432 2038	0408 1109 1724 2244	3.5E 2.3F 1.7E 0.9F	22 Su	0841 1459 2147	0443 1143 1805 2321	2.6E 1.8F 1.5E 0.4F	7 Tu	0148 0936 1555 2234	0558 1242 1904	3.4E 2.7F 2.5E	22 w	0140 0927 1530 2228	0551 1227 1849	2.6E 2.1F 2.3E
8 Th	0742 1327 1924	0338 1026 1622 2156	3.3E 1.7F 1.6E 1.2F	23 F	0841 1447 2059	0434 1133 1741 2254	2.9E 1.6F 1.3E 0.6F	8 Su	0040 0900 1534 2146	0508 1208 1827 2348	3.6E 2.7F 1.9E 0.9F	23 M	0051 0923 1545 2229	0533 1228 1850	2.8E 2.0F 1.8E	8 w	0254 1026 1636 2317	0046 0652 1328 1948	1.2F 3.4E 2.7F 2.7E	23 Th	0242 1008 1603 2257	0036 0637 1305 1924	1.0F 2.8E 2.2F 2.6E
9 F	0015 0830 1444 2038	0432 1127 1733 2257	3.6E 2.3F 1.7E 1.1F	24 Sa	0040 0920 1540 2201	0520 1220 1835 2345	3.0E 1.9F 1.4E 0.5F	9 M	0143 0951 1626 2243	0605 1300 1922	3.8E 3.0F 2.2E	24 Tu	0150 1002 1623 2305	0012 0618 1307 1929	0.5F 3.0E 2.3F 2.0E	9 Th	0354 1112 1713 2358	0137 0741 1410 2028	1.5F 3.4E 2.7F 2.9E	24 F	0339 1049 1634 2328	0119 0721 1341 1957	1.4F 3.0E 2.3F 2.9E
10 Sa	0104 0917 1548 2146	0525 1223 1836 2356	3.9E 2.7F 1.9E 1.1F	25 Su	0123 0957 1625 2253	0603 1302 1921	3.1E 2.2F 1.6E	10 Tu	0244 1039 1711 2335	0047 0659 1349 2011	1.0F 3.9E 3.1F 2.5E	25 w	0244 1040 1657 2338	0056 0700 1344 2005	0.7F 3.1E 2.4F 2.2E	10 F	0447 1155 1745	0223 0827 1449 2106	1.6F 3.2E 2.5F 3.0E	25 Sa O	0432 1129 1703	0200 0803 1416 2031	1.8F 3.0E 2.2F 3.2E
11 Su	0156 1005 1644 2249	0617 1315 1934	4.1E 3.1F 2.1E	26 M	0206 1032 1705 2338	0032 0644 1340 2003	0.5F 3.2E 2.4F 1.8E	11 w	0343 1126 1752	0141 0749 1434 2056	1.2F 3.8E 3.1F 2.7E	26 Th O	0335 1116 1728	0138 0740 1419 2038	0.9F 3.2E 2.5F 2.5E	11 Sa	0037 0537 1237 1814	0307 0910 1525 2141	1.7F 3.0E 2.2F 3.0E	26 Su	0002 0523 1210 1733	0241 0847 1453 2107	2.1F 3.0E 2.1F 3.4E
12 ™	0249 1052 1734 2347	0053 0708 1404 2027	1.1F 4.2E 3.4F 2.3E	27 Tu	0250 1106 1740	0116 0722 1416 2040	0.5F 3.2E 2.6F 2.0E	12 Th	0023 0439 1210 1830	0232 0837 1516 2138	1.3F 3.7E 3.0F 2.8E	27 F	0009 0425 1152 1757	0219 0820 1452 2111	1.1F 3.2E 2.5F 2.7E	12 Su	0116 0625 1317 1841	0349 0952 1600 2216	1.8F 2.7E 1.9F 3.0E	27 M	0039 0616 1254 1804	0325 0932 1531 2145	2.3F 2.9E 1.9F 3.5E
13 Tu	0342 1138 1821	0148 0758 1452 2117	1.1F 4.2E 3.5F 2.5E	28 w O	0017 0332 1140 1814	0157 0759 1451 2116	0.6F 3.3E 2.7F 2.1E	13 F	0109 0532 1254 1904	0321 0923 1556 2219	1.3F 3.4E 2.8F 2.8E	28 Sa	0043 0515 1230 1826	0300 0901 1526 2145	1.3F 3.1E 2.5F 2.9E	13 M	0155 0712 1359 1907	0430 1033 1634 2251	1.7F 2.4E 1.5F 2.9E	28 Tu	0120 0710 1342 1837	0411 1021 1612 2226	2.5F 2.6E 1.7F 3.6E
14 w	0042 0435 1225 1904	0241 0847 1538 2205	1.1F 4.0E 3.4F 2.6E	29 Th	0054 0416 1215 1845	0237 0837 1524 2150	0.6F 3.2E 2.7F 2.3E	14 Sa	0155 0624 1336 1937	0409 1008 1635 2259	1.3F 3.0E 2.4F 2.8E	29 Su	0119 0606 1309 1855	0342 0943 1602 2222	1.5F 3.0E 2.3F 3.0E	14 Tu	0236 0800 1445 1932	0513 1117 1710 2328	1.6F 2.0E 1.2F 2.7E	29 w	0206 0808 1436 1913	0501 1114 1657 2313	2.5F 2.4E 1.4F 3.5E
15 Th	0137 0528 1311 1945	0334 0936 1623 2252	1.0F 3.7E 3.2F 2.7E	30 F	0130 0502 1250 1914	0317 0915 1558 2225	0.7F 3.2E 2.6F 2.4E	15 Su	0242 0716 1419 2007	0458 1054 1713 2340	1.3F 2.6E 2.1F 2.8E	30 м	0159 0701 1352 1925	0428 1029 1640 2301	1.7F 2.7E 2.0F 3.1E	15 w	0320 0852 1538 1958	0600 1206 1750	1.5F 1.7E 0.8F	30 Th	0258 0911 1541 1954	0557 1214 1750	2.4F 2.1E 1.0F
				31 Sa	0208 0551 1327 1944	0400 0955 1633 2301	0.8F 3.0E 2.5F 2.6E					31 Tu	0244 0801 1440 1959	0519 1120 1722 2346	1.8F 2.4E 1.7F 3.2E								

Time meridian 120° W. 0000 is midnight. 1200 is noon. * Current weak and variable.

Current Sailing Resources

These resources are from the text Inland and Coastal Navigation, 2nd edition (Starpath Publications, 2013)

The 50-90 Rule for figuring current speeds between slack and peak flow

Divide the time between slack water and peak flow into three steps. In many cases, each step will be approximately one hour long. During the first step the current increases to 50 percent of its maximum value, and during the next step it increases to 90 percent of its maximum value. The same procedure will reproduce the fall in current speed after maximum flow.

The 40-60 approximation for estimating current set

The rule works adequately well for set angles up to 42° or so, which is equivalent to limiting its use to currents that are less than some three quarters of your boat speed. In most cases, knowledge of current speed and direction is not accurate enough to justify precise vector solutions. This formula is useful and easy to remember. Bow and quarter currents take less of a correction, but they are the same in each case. The only difference is the resulting SMG. Bow currents slow you down, quarter currents speed you up. Bow, beam, and quarter current directions are defined for this application with the boat pointed toward the destination, as in the starting position shown on each route. Use of the 50-90 Rule to estimate the effect of a changing tidal current on net progress

Divide the duration of the cycle into six parts, then use data from the inset to find the constant current speed that is equivalent to the changing current of the cycle. Sailing in a current with a peak speed of 3 knots from relative point B to point E, the current would be increasing from 1.5 knots to 3 knots and then decreasing to 2.7 knots during this time. From the inset, you can assume that this will move the boat as if in a constant current of 0.87 times 3, or 2.6 knots. Note that staying in a current from slack to peak (A to D) or slack to slack (A to G) is equivalent to sailing in a constant current of 0.63 times the peak current speed.

Slow Water Rule for Estimating Duration of Slack

You can estimate the time period that the current will flow at 0.5 kts or less on either side of a slack using the peak value of the current on either side of the slack.

The rule is the current stays less than 0.5 kts for about 60 minutes divided by the peak current speed in kts. Thus if the peak current is 2 kts, we expect that on that side of the slack the current will be less than 0.5 kts for 60/2 = 30 min. To this we must then add the period computed for the other side of slack based on the peak current on that side.