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Finding longitude at sea without a chronometer by the method of lunar distance is the 
most difficult and complex aspect of celestial navigation. It is unlikely, in the 21st 
century, that you would ever have to rely on this method to find your way home. 
However, a celestial navigator who theroughly understands “lunars” will also have a 
sound grasp of all aspects of celestial navigation, and will be comfortable with any 
celestial navigation problem encountered. And for the celestial enthusiast, there is no 
greater satisfaction than dispensing with the chronometer and successfully finding a 
longitude at sea through careful lunar observation. 
 
This article provides a concise but complete description of the lunar distance method, 
suitable for anyone who has basic familiarity with the use of a sextant to find position by 
celestial navigation. The only tools required are a good quality metal sextant (the plastic 
ones are not adequate for lunars), the Nautical Almanac, and an inexpensive scientific 
calculator. The iterative approach to the calculations used here simplifies the observation 
requirements, and allows concentration on carefully determining the Lunar Distance. 
 
The article is divided into separate sections, which cover each aspect of the lunar distance 
problem: 
 

1. A Short History of Lunars 
2. Measuring the Observed Lunar Distance (OLD) 
3. Averaging Multiple Observations to Reduce Error 
4. A Brief Trigonometric Interlude 
5. The Spherical Triangle and Calculator Methods 
6. Calculating the OLD for a Known Position and Time 
7. Determining GMT and Longitude at Sea from Observation of the Lunar Distance 

(OLD) 
8. Finding an Actual Longitude at Sea 

 
A reader with some familiarity with lunar distance concepts and an understanding of the 
spherical trigonometry used in navigation can go directly to sections 6 and 7, which 
describe the iterative method for calculating lunars. Someone approaching lunars for the 
first time would definitely find the other sections useful. 
 
 
1. A Short History of Lunars  
 
The stars with their fixed declinations, or the sun with its slowly varying one, have 
enabled people to determine latitude since antiquity by altitude at meridian passage. To 
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find longitude on a steadily spinning world, however, requires a clock. To the navigator 
time is longitude, 360 degrees every 24 hours, a degree every four minutes, a minute 
every four seconds, steadily ticking off as the world turns. Even the best pendulum clocks 
could not keep time on a tossing ship, and early mariners could only estimate their 
longitude by dead reckoning. Columbus, although he made contributions to navigation, 
had a particularly poor concept of longitude. In four voyages to the New World the lands 
he reached were 150 degrees of longitude from his estimated position, Cipango, the 
island of Japan, more than 7000 miles distant and on the other side of a different ocean. 
Clearly the Age of Discovery would require a better method of estimating position, and 
the Problem of Longitude engaged astronomers, navigators, and clock makers (as well as 
assorted mystics and crackpots) for the next 250 years. 

 
There are other ways to tell time, however, besides a mechanical timepiece. The sky 
provides a number of clocks for those who know how to read them. While the explorers 
opened up the oceans, the astronomers expanded the heavens, breaking out of the 
confining celestial spheres of the earth-centered Ptolemaic theory and into the vast 
expanse of the Copernican universe. In 1611 Galileo devised tables of his newly 
discovered moons of Jupiter, which could be used to determine time and thus the 
longitude of the observer. These tables worked in theory, but 17th century sea captains 
were never able use them. 
 
 The moon though, does provide a practical method of telling time at sea. The moon 
passes through its cycle of phases moving 360 degrees with respect to the sun in 28 days, 
or about 30 minutes of arc per hour. If you can measure the angular distance between the 
moon and the sun to within 0.5 minutes of arc, you can determine time to within one 
minute. One minute of time is 15 minutes of longitude, or plus or minus 12 miles at my 
latitude 38 North. Not GPS accuracy, but good enough to map the continents, or enable a 
ship to make a safe landfall. 
 
Lunar sights became a standard method of determining longitude. Even after the 
invention of the marine chronometer in 1761, lunar navigation remained important. 
Captain James Cook had no chronometer aboard the Endeavor in 1768; all Cook's first 
survey of the South Pacific was implemented by careful lunar observation. Throughout 
the 1800's on many vessels a navigator who could work lunars was the only way to find 
longitude, and still the best insurance for a safe return to port. Working a lunar, however, 
requires “Clearing the Lunar Distance”, an intense set of calculations involving “endless 
fussing with logarithms”. Nathaniel Bowdich described a systematic approach to working 
lunars in the American Practical Navigator in 1802, which made this technique available 
to a century of American sea captains. Lunar tables were published in Bowdich until 
1914. 
 
Joshua Slocum left his chronometer behind on his 1895 solo circumnavigation, because 
he lacked the funds to have it repaired.  Of all Slocum's feats of seamanship and 
navigation, perhaps the most famous is his precise landfall after navigating across the 
Pacific Ocean with nothing but a sextant and a tin clock, which he kept running by 
boiling periodically. Slocum used dead reckoning and a lunar longitude. 
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Lunar longitude has become pretty much of lost art since the time of Slocum, and 
celestial navigation itself has been relegated to a hobby for sailors, or for those who want 
to practice the sailor’s arts. With an inexpensive calculator, however, and a little 
persistence, anyone who practices celestial navigation can try their hand at lunar 
longitude by following the suggestions below.   

 
 
2. Measuring the Observed Lunar Distance (OLD) 
 
 
Observed Lunar Distance (OLD) is the angular distance in the sky between the adjacent 
edges of the sun and the moon; its measurement is the way we read the lunar clock. To 
measure the Observed Lunar Distance with a sextant, you bring the image of the sun 
toward the moon until the sun’s inner edge just touches the inner edge of the moon. As 
with all sextant measurements, you need to “rock” the sextant back and forth a bit to 
make sure the images are exactly tangent. The sextant reading will give the angular 
distance between the closest edges of the sun and the moon. Anyone who has tried 
“bringing the sun down” to the horizon will appreciate how much more difficult it can be 
to bring the image of the sun across the sky until it touches the image of the moon. Pre-
calculating the approximate lunar distance and setting the sextant to that value makes the 
procedure a whole lot easier. Record the sextant reading and watch time for each sight. 
Make a series of measurements so that they can be averaged (see below) to get a more 
accurate result. 
 
This measurement must be done very carefully; an error of just 1′ in the lunar distance 
(an error of one mile in ordinary navigation) can lead to a 30-mile position error from the 
lunar calculation. We really need to make this measurement to an accuracy of a few 
tenths of a minute, pushing the limits of what can be done with a sextant. I use a six-
power telescope on my sextant to more accurately determine the point of tangency.  
 
The sextant should be carefully adjusted before attempting lunar distance measurements. 
Consult the instruction manual for the sextant for adjusting the index mirror to be 
perpendicular to the frame. Side error must then be rigorously eliminated, and the index 
error carefully determined. The most straightforward way to evaluate both side and index 
error is to observe a star at night with the sextant set to read near zero. The star will be 
split into two images. Turning the micrometer drum or tangent screw back and forth 
should cause the two images to pass through each other. If they do not, there is side error, 
and it must be removed by adjusting the horizon mirror. Once the side error is removed, 
the two star images can be brought into coincidence, and the sextant reading at that point 
gives the index error. If the index error is modest, less than a few minutes of arc, it 
doesn’t need to be removed. 
 
Another way to check for side and index error is to observe the sun with the sextant again 
set near zero. (See “How to Measure Index Correction Using the Sun” on 
www.starpath.com.) Make sure you have the proper sun shades in place over both the 
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index and horizon mirrors before looking at the sun! Adjusting the micrometer drum 
should allow the two sun images to be brought into coincidence; otherwise, the horizon 
mirror must be adjusted to eliminate side error. Now adjust the micrometer drum to move 
the two sun images until they are just touching at one point of tangency. Record the 
sextant reading and turn the drum in the other direction until the two images are again 
just touching, and again record the reading. One of the readings will be a negative angle – 
“off the arc”. An “off the arc” reading of 28′ on the micrometer drum is really –1° +28′ or 
-32′. The difference between the two measurements is four times the sun semi-diameter 
as found in the Nautical Almanac, so you can check the accuracy of your results. One 
half the algebraic sum of the two values is the index error. It is good practice for the lunar 
distance measurement to repeat the sun index error determination a number of times, until 
you can do it accurately and consistently. 
 
3. Averaging multiple observations to reduce error.   
 
Here are some real lunar distance data taken by David Burch on May 7, 2000 from Lat 
47° 40.5′ N, Lon 122° 23.9′ W, and published on the Starpath web site in 2004. Times 
are in GMT and Index error is 0.0′:  
 
GMT                                  Observed Lunar Distance  
23:03:49                              51° 36.0′ 
23:08:43                              51° 37.6′ 
23:12:30                              51° 39.2′ 
23:15:25                              51° 40.0′ 
23:18:15                              51° 41.8′ 
23:21:58                              51° 42.7′ 
23:24:00                              51° 43.6′  
 
These observations can be averaged to reduce random error. Plot these data points on 
graph paper and draw the “best” straight line through them (see below). I also then threw 
out the worst point, and then calculated the best linear regression line through the 
remaining points using the linear regression function on my calculator. By whatever 
means a regression line is selected, that line then represents the averaging process. Any 
single point on the regression line represents the average of all the data, and there is no 
further need to deal with multiple observations in the analysis. See “How to Average 
Celestial Sights for Optimum Accuracy” by David Burch at www.starpath.com. 

 4

http://www.starpath.com/


35

40

45

0 5 10 15 20 25

23h + min GMT

51
de

g 
+ 

m
in

 L
D

 
I selected the observation at GMT 23:24:00, OLD 51°43.4′ as the data average, as most 
of the reasonable regression lines go pretty much through that point. (I also cheated, and 
did a little side calculation unfairly using the known GMT and Longitude. I found that 
this observation was very good, only off by 0.2′ arc. This is better than the stated 
accuracy of my Astra sextant, and better than I can usually make real measurements.) We 
will use this observation to work the examples in the rest of the text. 
 
4. A Brief Trigonometric Interlude 
 
If you know anything about trigonometry, you can skip this section. There are books 
written about trigonometry, but these few paragraphs will tell you everything you 
absolutely have to know to work a lunar by the methods below.  
 
If you deal much at all with triangles either on a flat plane like a piece of paper, or on a 
sphere like the earth or the sky, you will confront the trigonometric functions, sine and 
cosine. The sine of an angle, written sin(angle), is a number between –1 and +1 
inclusively. You find the number by looking it up in a table, or better yet, punching the 
angle into a pocket calculator and hitting the “sin” key. The sine numbers are mostly 
infinite decimals, but we only need to pay attention to the first five figures. So for 
example: sin (57°) = .83867, approximately. The cosine of an angle, written cos(angle), is 
(usually) a different number, likewise between –1 and +1 inclusively; you find it by 
punching the “cos” key on the calculator. Cos (57°) = .54464, for example. 
 
Just as you can go from the angle to the sine or cosine number, you can go from the sine 
or cosine number back to the angle. For every number between –1 and +1 inclusively, 
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there is an angle whose sine is that number. For example, 57° is the angle whose sine is 
.83867. We write that as: sin-1 (.83867) = 57°, where sin-1 is called “the inverse sine”. 
You find the angle from the sine number by punching the number into a calculator and 
hitting the “sin-1” key. The inverse cosine is similar.  
 
 
5. The Spherical Triangle and Calculator Methods 
 
All celestial navigation calculations involve solving spherical triangles using the formulas 
of spherical trigonometry. Those formulas require finding the sines and cosines of 
different of angles and multiplying and dividing a several 5 digit numbers together-a 
formidable task.  All the sight reduction tables like HO-229 or HO-249 are tabulations of 
specialized solutions of the spherical triangle suitable for determining LOP’s from 
celestial sights. Lunar distance calculations involve solving a number of spherical 
triangles, and the calculations are even more extensive. Lunar longitude requires great 
precision both in measurements and calculations. None of the inspection tables you may 
be familiar with are suitable for lunar longitude calculations; such tables are neither 
accurate nor flexible enough. Those tables generally require integral degree values for 
Local Hour Angle and latitude, or some other argument, which doesn’t work for the 
calculations required here. Special tables for lunar distance have been published (Bruce 
Stark, Tables for Clearing the Lunar Distance available from StarPath), which are 
specialized log – trig tables. If you want to be a purist, you could use the standard log – 
trig tables included in Bowdich; they would work with the method described below, but 
you would have to want the answer very bad to go through all that effort.   
 
However, an inexpensive scientific calculator will make short work of the messy 
formulas of spherical trigonometry. Make sure you get one with a “degrees – minutes- 
seconds” key. Such a key is invaluable both for entering angles and for working with the 
hours-minutes-seconds of time. I use a Casio fx-300MS, which I bought at Staples for 
less than $10. You can key the problem into that calculator the same way it is written in 
the formula, which makes the calculations easy to do. A big advantage of calculator 
methods for all celestial navigation is that you can use your best Estimated Position 
(Dead Reckoning position) for your Assumed Position (AP) in the calculations. Then the 
Intercept is the distance the LOP is from your EP, and plotting is very much simplified. If 
you use a GPS position for your AP for practice, then the intercept is just your sextant 
measurement error, a good way to get fast, clear feedback on your technique.  
 
 
 
 
 
 
 
 
 
 

 6



FIGURE 1 
 

 
   
Figure one is the familiar Nautical Triangle showing the latitude (Lat) of the observer at 
the assumed position (AP), the declination (Dec) of the ground position (GP) of the 
celestial body, and the Local Hour Angle (LHA) between the GP and the observer. The 
LHA  =  GHA – Longitude (West longitude considered positive, East negative, in this 
convention). Then the calculated altitude (HC) and meridian angle (Z) of the body is 
given by the standard formulas of spherical trigonometry: 
 

1) sin(HC) = sin(Dec)sin(Lat) + cos(Dec)cos(Lat)cos(LHA) 
 
      2)  cos(Z) =  sin(Dec) – sin(HC)sin(Lat) 
                                cos(HC)cos(Lat) 
 
Example: Find the altitude and Azimith of the sun from Lat 47° 40.5 ′ N, Lon 
125°53.9′W on 5/7/00 at 23:38:00 GMT. 
 
Solution: In our example, the Nautical Almanac gives the position of the sun on 5/7/00 at 
23:38:00 GMT as: 
 
GHA  175° 22.8′ 
Dec     17° 6.4′ 
 
From our assumed position at Latitude 47° 40.5′, Longitude 125° 53.9′ we get: 
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 LHA =   175° 22.8′ – 125° 53.9′ = 49°28.9′   
 
sin(HC) = sin(17°6.4′)sin(47°40.5′) + cos(17°6.4′)cos(47°40.5′)cos(49°28.9′) = .63561 
 
HC =  sin-1(.63561) = 39°27.9′ 
 
cos(Z) = sin(17° 6.4′) − sin(39° 27 52′)sin(47°40.5′)     =   - .33813   
                 cos(39°27.9′)cos(47°40.5′)  
 
Z = cos-1(-.33813) = 109.763° 
 
Since the sun is to the west, the azimuth AZ = 360° – Z = 250.237° = 250°14.2′ 
 
These same formulas can be applied to an analogous spherical triangle on the celestial 
sphere to find the angular distance between two celestial bodies, like between the sun and 
moon, for example. Celestial north and the celestial equator replace the north pole and the 
earth’s equator, and the declinations of the two bodies replace the latitude and declination 
in figure 1. The “LHA” is the difference in GHA of the two bodies. Sin(HC) in equation 
1 is replaced by Cos(Distance), where “Distance” is the angular separation between the 
two bodies. Similarly, the visible sky forms another sphere with the visible horizon 
analogous to the equator and the zenith corresponding to the pole. We will use triangles 
on this sphere to clear the lunar distance (see below). 
 
 
6. Calculating the OLD for a Known Position and Time 
 
 
Calculating the Observed Lunar Distance for a known position and time is the key step in 
finding longitude by lunar distance in the method described here. This procedure is 
basically the inverse of the possibly more familiar “clearing the lunar distance” 
frequently utilized in other descriptions of lunar longitude techniques. 
   
The angle between the centers of the sun and moon, the lunar distance (LD), can be 
calculated for a given date and time from the declinations and GHA’s of the sun and 
moon given in the Nautical Almanac, using the formulas of spherical trigonometry 
applied to the positions of the bodies on the celestial sphere.   Unfortunately, this 
straightforward calculation gives the geocentric lunar distance, the angle that would be 
measured by an observer at the center of the earth, a particularly inconvenient vantage 
point for astronomical observations. For observations from the surface of the earth, the 
geocentric positions of the sun and moon are altered by the effects of parallax and 
atmospheric refraction to give the actual Observed Positions in the sky. The Observed 
Lunar Distance is calculated by spherical trigonometry from the Observed Positions as 
they appear on the sphere of the sky. In the sky sphere, the zenith point is analogous to 
the pole of the more familiar navigational triangle on the earth, and the horizon is 
analogous to the equator.  

 8



 
 
                                               FIGURE 2 
 

 
 
Figure two illustrates the Lunar Distance and Observed Lunar Distance between the sun 
and moon as seen from an observer with a sextant on land or in a boat. The dotted figures 
represent the geocentric positions of the sun and moon, the “HC’s” as calculated from the 
Nautical Almanac. The solid figures represent the observed positions of the sun and 
moon in the sky, taking in account the effects of refraction and parallax.  The altitude HC 
of the sun is increased by refraction to the observed altitude HO. The altitude HC of the 
moon is likewise increased by refraction, but decreased by the more significant effects of 
parallax, so that HO of the moon is less than HCmoon.  
 
The first task is to calculate the HC and azimuth of each body for the date, assumed time 
and assumed position from data in the Nautical Almanac, using the basic formulas of 
spherical trigonometry as we did in the previous section. The calculated altitudes (HC) of 
the sun and moon are then increased by refraction from the atmosphere and decreased by 
parallax to yield the observed altitudes, HO. (Note that this is the opposite of how we 
normally work up a sight, where we subtract the refraction correction and add the 
parallax correction to our observed value HO, to get HC.) The azimuths of the sun and 
moon are unchanged by refraction and parallax.  It is from these observed altitudes, and 
the difference in azimuths between the sun and moon, that the Observed Lunar Distance 
is calculated. These calculations cannot be done with any sort of inspection tables, as we 
mentioned. 
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 Example: Calculate the OLD for May 7, 2000 at 23:38:00 GMT from Lat 47° 40.5′ N, 
Lon 125° 53.9′ W 
 
We calculated the HC and azimuth AZ of the sun at this time and location in the example 
in Section 5. Similarly for the moon we get GHA = 119° 52.2′, Dec = 21° 34.4′ from the 
Almanac.  LHA =  GHA – Longitude = 119 52.2 - 125 53.9 = - 6°1.7′. From those values 
we calculate as in the previous section: HC = 63° 27 3′, AZ = 167° 22 44′.  
 
We now calculate the HO’s, the observed values, for the sun and moon by correcting HC 
for refraction and parallax. We ignore parallax for the sun, as its impact is negligible 
here. The refraction corrections are taken from the table for stars and planets in the 
Nautical Almanac. The horizontal parallax HP of the moon is given hourly on the daily 
pages, and is 60.1′. The parallax correction is equal to HPcos(HC) and is subtracted from 
HC. Parallax correction is 60.1′cos(63° 27.1′) = 26.9′. 
 
HCsun =                 39° 27.9′1                   HCmoon =               63° 27.1′  
+ Refraction               +1.2′                       -Parallax                        -26.9′     
HOsun =                 39° 29.1′                    +Refraction                        0.5′                                                           
                                                                   HOmoon =                 63°  0.7′     
   
We can now calculate the Observed Lunar Distance between the centers of the sun and 
moon, applying the analogue of formula (1) on the spherical triangle of the sun, moon, 
and zenith in the sphere of the sky (see figure 2) remembering that sin(90-θ) = cos(θ): 
 
Cos(OLD) = sin(HOsun)sin(HOmoon) + cos(HOsun)cos(HOmoon)cos(AZsun-AZmoon)  
 
Plugging the numbers into the formula above we get: 
  
Cos(OLD) = sin(39°29.1′)sin(63°0.7′) + cos(39°29.1′cos(63°0.7′)cos(250.237°-167.379°) 
 
Cos(OLD) =  .61014 
 
OLD =    cos-1(.61017) = 52.397° = 52° 23.9′ 
 
But this isn’t quite the OLD we measure with the sextant. This is the calculated OLD 
between the apparent centers of the sun and the moon. To get the actual measured OLD 
we need to subtract the semi-diameters of the sun and moon from this value. The semi-
diameter of the sun is taken from the bottom of the Almanac page, 15.9′ for this date. The 
semi-diameter SD of the moon is best calculated from the horizontal parallax HP given 
each hour in the Almanac by the formula SD = .2724HP. In this example SD = 
.2724X60.1′ = 16.4′. But we are still not done. This is the geocentric semi-diameter of the 
moon. The semi-diameter observed from the surface is generally increased by the fact 
that we are closer to the moon from the surface of the earth, about 4000 miles closer 

 10



when the moon is straight overhead. This augmentation to the semi-diameter is about 
0.3′sin(HC), or 0.3′sin(63°) = 0.2′, approximately.   
 
The OLD then is 52° 23.9′ – 15.9′ – 16.4′ – 0.2′ = 51° 51.4′                     
  . 
 
7. Determining GMT and Longitude at Sea from Observation of the Lunar Distance 
(OLD) 
 
You need to make only two measurements to find longitude and time: the Observed 
Lunar Distance and the altitude of some body, all timed with the local clock that we are 
trying to calibrate for GMT. Any crude clock will do; Slocum used an old tin clock, 
which ran only sporadically.  
 
The basic procedure for calculating GMT is an iterative method that starts off from an 
assumed time and position. The Latitude, of course, we know from the meridian passage 
of some body (or else we peek at the GPS, but only for the Latitude!). Assume a GMT 
for your local clock based on your best estimate of the time and find the corresponding 
assumed Longitude. The assumed Longitude comes from the intersection of the parallel 
of known Latitude with an LOP from an altitude sight using the assumed GMT. Or you 
can assume a Longitude based on your best Estimated Position and calculate the 
corresponding assumed time from the altitude of the observed body. The assumed time 
and the assumed Longitude are linked; if you increase the assumed time by four minutes, 
you increase the corresponding assumed Longitude by one degree toward the west. The 
procedure then is as follows: 
 

1) From the assumed position at the assumed time, calculate the corresponding 
OLD. This is the inverse process of clearing the lunar distance. See Section six.  

 
2) Compare the calculated OLD with the actual measured OLD. From the difference 

in these Lunar Distances, calculate the time correction to the assumed time. In the 
example below, I use the rate of 106 seconds of time/minute of arc of OLD 
difference (106 sec/1′), which is the actual rate of increase of geocentric Lunar 
Distance for the day and hour in the example. The rate of lunar distance change 
with time can vary from 106sec/1 to 136sec/1′. The exact value used for this 
correction doesn’t matter much; any value around 12.5°/day (115sec/1′) will work 
fine and converge to the correct answer. However, you must use a rate similar to 
the rate of change for the geocentric Lunar Distance; using the slope of the OLD 
observations regression line (in the earlier example in section 3, 156sec/1′) can 
converge very poorly.  

 
3) Apply the time correction to the assumed time, and make the corresponding 

correction to the assumed Longitude. The assumed Longitude, of course, is 
increased to the west by 1° for every four minutes increase in assumed time, or 1′ 
for every four seconds of increased time. This correction produces a new assumed 
time, and a corresponding new assumed position. 
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4) Go back to step #1. When the difference between the calculated OLD and 

observed OLD is less than the measurement error (I generally use 0.1′), you are 
through, and have found both GMT and the Longitude. 

 
 
We work out an example below: We will use the value of OLD of 51° 43′ 36′′ actually 
taken at GMT 23:24:00 from Lat 47 40.5′ N, Lon 122° 23.9′ W discussed in Section 3.  
However, let us imagine that the observations were made with a clock that was 14 
minutes fast on GMT. The corresponding longitude would then be found to be 3° 30′ to 
the west. Our assumed time would be 23:38:00, and the corresponding Assumed 
Longitude would be 125°53.9′.The actual measured OLD is 51° 43′ 36′′. We used these 
values in our example in section 6 to calculate the OLD. As there are some rounding 
errors, we carry out the calculations to the nearest second: 
  
      Time                                    Longitude                                  Calculated OLD       
 
1)  23:38:00                             125° 53′ 54′′                                   51° 51′ 26′′    
 
The lunar distance is increasing with time (moon waxing). The difference between 
calculated and measure OLD (∆ OLD) is 7′ 50′′, leading to a time correction (∆ T) of - 
13′ 52′′ and a corresponding longitude correction (∆ L) of -3° 27′ 58′′. Applying the time 
and longitude corrections and calculating the new OLD at the new time and longitude we 
get: 
 
2) 23:24:08                             122° 25′ 56′′                                      51° 43′ 29′′   
 
This time the ∆ OLD is - 0′ 7′′, the corresponding ∆ T is 12′′, and the ∆L is 3′. Applying 
these corrections and calculating the new OLD, we get: 
 
3) 23:24:20                              122° 28′ 56′′                                    51° 43′ 36′′ 
 
At this point the calculated OLD is the same as the measured OLD, and the calculation is 
complete. We find a GMT 20 secs fast, and a corresponding longitude 5′ to far west.  
 
The method describe here converges very fast and accurately. It almost converged on the 
first iteration. The error here of 20 sec corresponds almost exactly to the observational 
error of 0.2′. If an assumed time with one hour error is used, with a corresponding 
longitude error of 15 degrees (up to 900 miles), this procedure still converges in two 
iterations to the same solution. 
 
These calculations can be done with a Nautical Almanac and a simple scientific 
calculator, as demonstrated with these examples. I have also programmed a pocket Casio 
calculator with the very accurate Meeus algorithms for the sun and moon (Astronomical 
Algorithms, Jean Meeus, Willmann-Bell Inc. 1998), along with routines to calculate the 
OLD and to carry out the iteration procedure described above. Once I enter the date, 
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assumed time, assumed position, and observed OLD, the calculator returns the correct 
GMT and Longitude in 48 seconds. The StarPilot calculator from Starpath is the only 
commercially available programmed calculator I am aware of that can calculate lunars; it 
uses a similar approach to the one described here.  
 
8. Finding an Actual Longitude at Sea 
 
In 1992 I had an opportunity to work a “lunar” during a sailing trip to Hawaii. It was my 
first ocean voyage, and I was looking forward to matching at least my celestial skills with 
those of Captain Slocum. The sky, however, wasn't cooperating. It was overcast for days, 
and I had to be content with grabbing quick sun lines whenever the solar disk resolved 
itself through the haze. Finally the sky cleared enough to reveal what I had been waiting 
for, the sun and crescent moon both visible "in distance" though an opening in the clouds. 
 
I quickly broke out my sextant and roughly calculated the altitude of the moon, the lunar 
distance, and the altitude of the sun. The initial calculations would allow me to preset the 
sextant for these observations and save time "bringing down the sun,” or what is even 
more awkward, bringing the image of the sun across the sky to touch the moon for 
measuring the lunar distance. I started my wind-up alarm clock with its sweep second 
hand to use as a time scale (you can still buy one at Payless, but it isn't made of tin) and 
prepared to take the sights. Slocum handled the whole process himself, but I enlisted the 
aid of an assistant to record clock times and sextant angles as I shouted them out. I made 
a series of measurements for averaging both the sun altitude and then the lunar distance. 
Fog obscured the horizon under the moon, but this iterative method of calculating lunars 
doesn’t require a measurement of the moon altitude. I had practiced the lunar distance 
observation from the stability of my porch roof at home, but it is another thing to try it 
lying in the cockpit of a small boat and to brace yourself, squinting through the sextant 
telescope at the sky, in such a place that a sudden roll doesn't cause the mainsail to block 
out the image of the sun or the moon. 
 
I assumed a GMT for the alarm clock based on an estimate of   our approximate time. 
The sun was nearly due east when I took my sights, so the sun line at the assumed time 
gives a good corresponding assumed longitude. Calculating the HC’s and azimuths of the 
sun and moon at the assumed time and position from data in the Nautical Almanac and 
clearing the lunar distance to adjust for refraction and parallax gives the calculated 
Observed Lunar Distance. Comparing the calculated OLD with the measured distance 
after two iterations gives Greenwich Mean Time and longitude of the sight. A classic 
Noon Sight for latitude advanced backwards provides a running fix. My position so 
calculated was less than seven miles from the truth. 
 
Seven miles without a chronometer may not be up to modern electronic standards, but it 
sure would have given Columbus a start! In truth, a result this close must be somewhat 
fortuitous; my error in lunar distance of 0.3' was less than the specified accuracy of my 
inexpensive Astra sextant. Slocum claimed less than 5 miles error, and also freely 
admitted the role of luck. At least as far as my efforts go, Slocum's record still stands; it 
is the stuff of legends. In any case, I have never done better celestial work. 
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There are certainly better ways to get a position than the lunar method described here, or 
for that matter, quicker ways to cross an ocean than to be blown about in a sailboat. 
Staring at the dials of a GPS tells precisely where you are, but a carefully worked out 
lunar does more-it connects us with our past, with the navigators of the oceans and the 
mind who puzzled out the heavens and the earth. The GPS tells position, but a lunar fix 
reminds you also where you've come from. As Joshua Slocum wrote in 1899, "The work 
of the Lunarian, although seldom practiced in these days of chronometers, is beautifully 
edifying and there is nothing in the realm of navigation that lifts one's heart up more in 
adoration." 
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